

Photonic Bandgap Agile Beam Steering

Monte Khoshnevisan

STAB Programs Kickoff Meeting August 8-9, 2000 Los Angeles, CA

PBG-STAB Program Team Members

RSC.STAB.Kickoff.Aug.00 Chart 2

Navy/SPAWAR:

· Dr. Mike Lovern, Dr. Mark Lasher

Program Team:

- Rockwell Science Center (Team Lead)
- MIT
- UCLA
- Boeing Phantom Works

• <u>MIT</u>:

- Prof. John Joannopoulos
- Prof. Leslie Kolodziejski
- Dr. Gale Petrich

• **RSC**:

- Dr. Monte Khoshnevisan
- Dr. Young Chung
- Dr. Les warren
- Dr. Bill Christian
- Mr. Ray Delcher

Boeing:

- Dr. Barbara Capron
- (Dr. Walter Charczennko)

· <u>UCLA</u>:

Prof. Eli Yablonovitch

List of Performance Goals for PBG-STAB

Angular Range:	≥ +/- 50 degrees, 1D and 2D (azimuth & elevation)
Resolvable Spots:	~ 500 per mm aperture per dimension @1.55 μm
• Speed:	< 1 millisecond
Wavelength Range:	Applicable to eyesafe 1.5 to 14 µm infrared
Output Aperture:	≥ 1 cm for demonstrations, and scalable
Access Mode:	Random access capability
• Sidelobe Suppression:	≥ 30 dB
Pointing:	Capable of simultaneous multi-targeting
Packaging/Power:	Small, low power, microsystems-compatible

Photonic Bandgap (PBG) Agile Beam Steering (PBG-STAB)

RSC.STAB.Kickoff.Aug.00 Chart 4

A New DARPA/MTO STAB Program:
Industry Team:
•MIT
•UCLA
•Boeing
•RSC (Lead)

Beam Steering
Based on
Extraordinary
Optical Effects

PBG Super-Prisms

PBG Super-Refraction

Future Impact:

PBG-STAB Program Goals:

New Science

New Engineered Materials

New PBG Agile Beam
Steering Concept Demo's

Breakthrough Advances in Battlefield Laser Systems

New Dual Use Photonic & WDM Device Components

Rockwell Science Center

Photonic Bandgap Agile Beam Steering

RSC.STAB.Kickoff.Aug.00 Chart 5

Eli Yablonovitch, et al (1989) J. Joannopoulos, et al (1997)

Super-prism Effects for Beam Steering

RSC.STAB.Kickoff.Aug.00 Chart 6

Beam steering by Angular Super-dispersion

Beam steering by spectral Super-dispersion

H. Kosaka, et al, NEC (1999)

Photonic Bandgap Materials Offer Potential for STAB

- Super-prism and super-refractive effects
- Beam steering device concepts with PBGs
- Augmentation with advanced optics/micro-optics
- Demonstrate PBG-STAB feasibility
 - Phenomenology, design and modeling (IR applications,)
 - PBG fabrication and characterization,
 - Laboratory proof-of-concept demonstrations of useful super-prism effects and agile beam steering,
 - Examine applications and limitations.

PBG-STAB Program Schedule

RSC.STAB.Kickoff.Aug.00 Chart 8

Rockwell Science Center

MIT-Theoretical Effort (Prof J D Joannopoulos)

RSC.STAB.Kickoff.Aug.00 Chart 9

Objective: Provide theoretical and modeling support of experimental efforts at RSC, MIT, and Boeing, in synergy with UCLA

- Photonic crystal physics and bandstructure design
- Detailed modeling of hyperdispersive photonic crystal properties
- Computational experiments to predict steering capabilities

Year 1 Focus: Azimuthal angle steering: Explore the photonic properties of 2-dimensionally periodic photonic crystals in 2D and 3D-slab geometries

Year 2 Focus:

Azimuthal and Elevation Angle Steering: Begin exploration of the photonic properties of 3-dimensionally periodic photonic crystals including new designs

Year 3 Focus: Structure Design and Optimization: Design and model photonic crystals with enhanced steering properties

MIT-Theoretical Effort (Year 1 Approach)

- Perform frequency-domain calculations to obtain the complete bandstructures for different geometries
- Determine the dispersive nature of the effective index: n(w,k)
- Identify and select promising candidate structures
- Perform time-domain computational experiments to predict the angular dependence of the refracted beam intensity as a function of the incident beam frequency
- Tune the photonic crystal structure and bands in order to achieve optimal steering performance

MIT- Experimental Effort (Prof. Leslie Kolodziejski)

RSC.STAB.Kickoff.Aug.00 Chart 11

Year 1: Continue emphasis on design, fabrication and measurement of 2D slab photonic crystal structures having holes, and

.... Begin fabrication of complementary 2D slab photonic crystal structures having rods.

Year 2: Begin fabrication of selected candidate structures.

MIT Materials and Fabrication Capabilities

- III-V Semiconductor Heterostructures (Grown by Gas Source MBE)
- Selective wet thermal oxidation of Al_xGa_{1-x}As
- High Index Contrast Systems

BOEING®

- Spatial phase-locked e- beam **lithography** (<10 nm stitching error over mm dimensions)
- Reactive Ion Etching
- Selective Wet Etching

Lattice periodicity and dimensions dictated by bandstructure design and application

RSC.STAB.Kickoff.Aug.00 Chart 12

Cladding

Photonic Bandstructure Engineering: Coupling Light in/out of PBGs

UCLA Efforts for PBG-STAB (Prof. Eli Yablonovitch)

PBG Phenomenology, Modeling & Design:

- Lessons for IR from microwave PBG studies
- Collaboration with MIT on modeling & PBG design for IR
- New PBG concepts
- Methods to exploit PBG structures design, super-prism effects, and optimum PBG coupling to conventional optics
- Interpretation of experimental data

RSC PBG Materials by Self-assembly

Example of Oxide PBG development::

- Structured substrates
- Suspension of microspheres in appropriate oxide (e.g., titania)
- Process, sedimentation and selfassembly (now more art than science)
- Slow burn-off of microspheres to leave ordered air spheres
- Experiment with different lattice symmetries (e.g., bcc, fcc, hex)
- Experiment with different dielectrics, metallization, intentional defects

Optical Characterization (RSC and Boeing)

RSC.STAB.Kickoff.Aug.00 Chart 16

Conventional optical characterizations

- Microscopy (optical, SEM, AFM)
- Incoherent light (spectrophotometers): UV- LWIR

Spectral super-dispersion and super-refraction

- Lasers: Wavelength range: 523 nm to 11000 nm (discrete wavelengths)
- Laser studies near 1500 nm:
 - Wavelength range: 1450 nm to 1590 nm
 - Absolute wavelength accuracy, typ. ±0.1 nm
 - Relative wavelength accuracy:
 - ±0.035 nm (1475–1575 nm)
 - ±0.050 nm (1450–1590 nm), typ. ±0.001 nm Wavelength
 - Resolution: 0.001 nm, 125 MHz at 1550 nm
 - Wavelength stability (typ., over 1 hour at constant temperature): < ±100 MHz
 - Wavelength repeatability: ±0.035 nm (1475–1575 nm)

±0.050 nm (1450–1590 nm), typ. ±0.001 nm

Tuning speed (typ. for a 1/10/100 nm step): 200 ms/300 ms/2 s

PBG Agile Beam Steering (Conceptual)

- Based on PBG super-prisms in IR
- Requires PBGs designed for the application (λ , \underline{k} , \underline{P} , $\Delta\Theta$, 1-D, 2-D)
- Requires conventional beam control components and special optics (Note: super-prism effects are largely based on group velocity effects in PBG materials)
- Micro-systems compatible
- Numerous configurations possible
- PBG design, fabrication, characterization, and laboratory proof-of-concept demo's will be carried out

Photonic Bandgap Agile Beam Steering

RSC.STAB.Kickoff.Aug.00 Chart 18

(b) dispersion surfaces

H. Kosaka, et al, NEC (1999)

PBG-STAB: Key Technical Challenges

- Understanding and theoretical modeling
- Designing to the application
- Fabrication to design
- Super-prism effects: characterization, exploitation of benefits and overcoming other related effects
- Achieve high resolution, not just large deflection angles
- Side lobe suppression >30 dB
- Special Optics to utilize group velocity dispersion effects
 - Input and output to PBGs
 - Supporting devices
 - Pre-prototype compatible designs

PBG - STAB Program - Main Tasks

PBG Physics, Phenomenology, Materials and Structures Design

(MIT, UCLA)

- Modeling of IR PBG Structures
- Band Structure Calculations
- Super-dispersion &Super-refraction
- Lessons for IR from Microwave Studies
- PBG designs for Enhanced Beam Steering
- Simulation
- Comparisons with Experimental Data

IR PBG Materials Fabrication

(MIT, RSC)

- GaAs- based PBGs by Epitaxial Techniques
- Oxide-based PBGs (Self-assembled)
- Structural Characterizations
- PBG Samples for Optical Characterizations and Pre-prototype Beam Steering Lab Demo's

PBG Super-prism Characterization, and Beam Steering Studies

(RSC, Boeing)

- Super-prisms / Optics/ Optical Designs
- Tunable Lasers/Multiple Lasers
- Optical Characterizations of PBGs
- Laboratory 1-D & 2-D Beam Steering Demo's
- Pre-prototype Agile PBG Lab Demo's

RSC.STAB.Kickoff.Aug.00 Chart 20

PBG-STAB Program Deliverables

(TEAM)

- Materials & Structures Designs
- Fabrication Methods
- Super-prism Demo's
- PBG-STAB Feasibility Demo's & Evaluation

PBG-STAB Program - Team Member Responsibilities

RSC.STAB.Kickoff.Aug.00 Chart 21

RSC

MIT

UCLA

Boeing

- Program Mgmt
- PBG Material Fab
- Self-org. Sol-gel
- Oxides/Ferro
- Characterization
- PBG-STAB Concepts
- Beam Steering Demo's
- PBG-STAB Feasibility Evaluation

- PBG Physics & Band Structure Design
- Detailed Modeling
- PBG Material Fab
- GaAs-based
- Structural Characterization
- PBG-STAB Feasibility Evaluation

- PBG Phenomenology
- Lessons from Microwave PBGs for IR/Optical
- Model Metallized PBGs
- Data Interpretation
- PBG-STAB Feasibility Evaluation

- PBG Super-Prism Characterization & Feedback to Materials
- Tunable & Multi-Lasers
- Potential Applications & Limitations
- PBG-STAB Feasibility Evaluation

Summary: Photonic Bandgap Agile Beam Steering

- New Technology for agile beam steering
- Strong industry & academic team
- Multi-disciplinary approach emphasizing:
 - Theoretical & experimental PBG science,
 - PBG materials developments by epitaxial and self-organized techniques
 - Proof-of-concept (pre-prototype) PBG-STAB demo's
 - Identify applications and limitations
- Major benefit expected from the program developments for dual use photonics applications

